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Mitochondria have their own gene expression machinery and the relative abundance of
RNA products in these organelles in animals is mostly dictated by their rate of degradation.
The molecular mechanisms regulating the differential accumulation of the transcripts in this
organelle remain largely elusive. Here, we summarize the present knowledge of how RNA
is degraded in human mitochondria and describe the coexistence of stable poly(A) tails
and the nonabundant tails, which have been suggested to play a role in the RNA degrad-
ation process.

Gene expression in human mitochondria
Mitochondria are critical for many metabolic pathways, including in the production of ATP via oxida-
tive phosphorylation. The organelle is an evolutionary remnant of an endosymbiotic event that
occurred between an α-proteobacterium and an ancient host cell 1.5 billion years ago, after which,
most of the bacterial genes were transferred to the nuclear genome of the ancient host [1,2]. The
mammalian mitochondrial genome preserved a total of 37 genes, encoding 2 ribosomal RNAs, 22
tRNA, and 13 proteins, all of which are oxidative phosphorylation component subunits, essential in
several critical metabolic pathways and in maintaining cell viability [3,4]. Mitochondrial RNAs are
transcribed from the mitochondrial DNA, as polycistronic molecules, in a process in which the
mRNAs and rRNAs are mostly punctuated by tRNAs [3–5]. Endonucleolytic cleavage of tRNAs, at
both 50- and 30-ends, is driven by RNase P and RNase Z, respectively, producing, in addition to pro-
cessed tRNAs, the rRNA and mRNA transcripts (Figure 1) [5–9]. The released mRNA species are
then decorated with stable poly(A) tails and translated by mitochondrial ribosomes. Owing to mito-
chondrial genome reduction that evolved with time, 7 of the 13 mRNA molecules contain truncated
translational stop codons, composed of only U or UA instead of UAA; therefore, posttranscriptional
addition of a stable poly(A) tail at the 30-end of the molecule is required for the production of a func-
tional stop codon [10] (Figure 1). Additional functions of the stable poly(A) tails were also proposed
[11–14]. Aside from the addition of a stable poly(A) tail at the 30-end, the addition of transient and
unstable poly(A) tails at the 30-end of truncated transcripts has also been observed [15]. These tails
may indicate the polyadenylation-assisted degradation pathway of RNA described in bacteria, archaea,
organelles, as well as in the nucleus and cytosol [10,16–18]. Although produced from only a few poly-
cistronic transcripts, the rRNA, tRNA, and mRNA transcripts accumulate in the mitochondria to
varying concentrations, indicating the importance of a modulated and well-controlled RNA degrad-
ation mechanism [19]. The presence of RNA granules, associated with RNA-binding proteins and
enzymes that are functionally linked to mitochondrial transcript processing and degradation, has been
recently described [20–23].

Mitochondrial ribonucleases
To better understand defects in mitochondrial RNA turnover and consequential mitochondrial disorders,
extensive investigations to identify the ribonucleases responsible for mitochondrial transcript processing
and degradation are underway [3,4]. The mitochondrial RNase P and RNase Z (ELAC2), which process
the tRNAs, have been characterized [6–8]. Owing to the established role of polynucleotide phosphorylase
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(PNPase) in 30–50 exoribonuclease activity on RNA and polyadenylation in prokaryotes, chloroplasts, and plant
mitochondria [22,24–26], its human counterpart has been designated as the most suitable candidate to execute
identical activities in human mitochondria. However, this assumption was questioned when PNPase was found
to be primarily located in the mitochondrial intermembrane space of human cells [27]. A recent work has
shown that a significant amount of PNPase complexes with the hSuv3p helicase to form the mitochondrial
exosome (also known as the mitochondrial degradosome), in RNA granules [22], and degrades ‘mirror’ RNAs
that are complementary to mitochondrial genes within defined regions, termed D-foci. These mitochondrial
defined regions could be the same RNA granules described before for RNA-binding proteins [21]. An add-
itional RNA exonuclease, termed REXO2, is located both in the mitochondrial intermembrane space and in the
matrix, and has been proposed to degrade oligoribonucleotides, byproducts of the activities of PNPase and
other ribonucleases [28]. PDE12, a mitochondrial 20- and 30-phosphodiesterase, has been shown to remove
stable poly(A) tails [29,30]. Endonuclease G is a powerful, nonspecific DNA/RNA endonuclease that is located
in the intermembrane space of the mitochondria and functions during apoptosis [31,32]. Several RNA-binding
proteins that are essential for the correct processing and stability of mitochondrial transcripts, but that do not
possess ribonucleolytic activity, have also been described [6,12,20,21,23,33,34].
In a search for ribonucleases that are responsible for RNA degradation in human mitochondria, an unchar-

acterized protein from the metallo-β-lactamase (MBL) superfamily was identified. This previously unanno-
tated, soluble, monomeric, human mitochondrial matrix protein, LACTB2, has been recently shown to
display endoribonucleolytic activity [35]. Unlike other mitochondrial proteins, such as GRSF1 [23] and
RNase P [6] or PNPase and hSuv3 [22], that form protein complexes, LACTB2 is not engaged in a higher-
order complex of proteins. Recombinant and purified LACTB2 cleaves single-stranded RNA molecules and
knocking down its expression by RNAi results in a modest elevation of the levels of several mitochondrial
mRNAs, in mitochondrial dysfunction, and in rapid cell death [35]. However, its specific biological function
remains to be discovered. Interestingly, RNase J, another MBL protein, is a pivotal ribonuclease in the RNA
degradation process in bacteria, archaea, and the chloroplast [36]. Accordingly, LACTB2 could be a remnant
of the evolutionary prokaryotic ancestor of the mitochondria, which has remained intimately involved in
RNA degradation.

Degradation and polyadenylation of RNA in different
mitochondria
The mechanism of mitochondrial RNA degradation varies between organisms. Despite the addition of a stable
poly(A) tail at the 30-end of the RNA molecules in trypanosomes and mammals [10] (Table 1), and evolutionary
adaptions in the enzymatic players driving RNA degradation in different organisms, in general, mitochondria have

Figure 1. RNA processing in animal mitochondria.

The genome is transcribed into polycistronic RNAs, and mRNAs are punctuated by tRNAs. The tRNAs are then cleaved at the

50- and 30-ends by the endoribonucleases RNase P and RNase Z, respectively. Several mRNAs contain incomplete

translational stop codons composed of only U or UA instead of UAA. The addition of a stable poly(A) tail at the 30-end by

mtPAP creates a complete stop codon. The mRNA is then translated, and eventually degraded by the polyadenylation-assisted

degradation pathway.
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preserved the prokaryotic RNA decay system [37–40]. Organisms representing the different forms of polyadenyla-
tion in mitochondria are plants, yeast, trypanosomes, and mammals [10] (Table 1). RNA in plant mitochondria is
polyadenylated with unstable poly(A) tails, synthesized by the activity of a poorly characterized poly(A) polymerase
(PAP). This PAP is responsible for the catalysis of homopolymeric extensions at the 30-ends of truncated molecules
(perhaps cleavage products), as well as the 30-end [41,42]. The two plant proteins responsible for 30–50 exoribonu-
cleolytic activity are RNase II/R [43], and PNPase, which is also known for its dual phosphorylase activity, as a
polymerase and as a ribonuclease, in bacteria and organelles [15,25]. A poly(A)-specific ribonuclease has also been
characterized in plant mitochondria [42]. However, to date, no endonuclease has been linked to the initial endonu-
cleolytic cleavage, which is believed to initiate the degradation pathway in plant mitochondria [10].
In yeast mitochondria, where no polyadenylation and no PNP genes are found, a protein complex, defined

as the yeast mtExo or the yeast mitochondrial degradosome, consisting of an RNase R exoribonuclease and an
RNA helicase, is responsible for RNA degradation [44,45]. Mitochondrial/chloroplast RNase R exonucleases are
inhibited by a secondary stem-loop structure at the 30-end of the RNA molecules and, therefore, require endo-
nucleolytic cleavage and polyadenylation, or the recruitment of an RNA helicase, before they can act on the
RNA. In yeast mitochondria, the RNase R homolog, Dss1, digests RNA secondary structures in complex with
the helicase SUV3 [22,38,44].
The trypanosomes constitute another organismal group that express RNase R exoribonucleases.

Trypanosomal mitochondrial transcripts, like mammals, contain both stable and unstable tails, composed of
both short oligo(A) and long poly(A) sequences that in this group is dependent on the editing stage of the par-
ticular transcript [46,47]. In at least one case, the long tail is composed of a significant number of uridines, and
is therefore termed an A/U extension. In addition, a mitochondrial PAP (mtPAP) was characterized and found
to be essential for the parasite’s viability [46,48].
Since human metabolism of mitochondrial RNA resembles, in some aspects, that of its prokaryotic ancestor,

it was questioned whether in the background of the stable poly(A) tails, unstable poly(A) tails are present and
play a role in the polyadenylation-assisted degradation pathway. Slomovic et al. [15] discovered polyadenylation
on the immature, truncated ends of mitochondrial mRNA, rRNA, and tRNA transcripts in human cells, most
likely a remnant of the poly(A)-assisted RNA degradation pathway in prokaryotes/organelles [10].
As described above, genes encoding both mtPAP and PNPase exist in the mammalian genome, and their

products are targeted to the mitochondria. To date, PNPase polymerization activity in prokaryotes and the
chloroplast has been associated with the formation of heteropolymeric tails only, thus suggesting that the
homogeneic poly(A) tails, characterized thus far in human mitochondria, are formed by mtPAP, and not by
PNPase [14,49,50]. Knocking down the expression of both mtPAP and PNPase resulted in shortening of the
stable poly(A) tails of ND3 and ATP6/8 from about 50 nt to 8 nt, suggesting that there is an additional, yet
uncharacterized PAP in the mitochondria [12,14,26,51]. However, a recent mtPAP knockout study in
Drosophila, demonstrating the almost complete depletion of oligo(A) tails, suggested that at least in this
organism, a single mtPAP is responsible for the polyadenylation in the mitochondria [52].
The coexistence of stable and unstable poly(A) tails was also observed in the cytosol and nuclei [15,53–55],

and has been shown to play a crucial role in determining RNA fate [10]. This dual function of polyadenylation
in marking mtRNA for exonucleolytic degradation or translation resembles the role of the stable versus

Table 1 Characteristics of mitochondrial polyadenylation and degradation in different organisms
No mtPAP or PNPase is found in yeast mitochondria and therefore no poly(A)-tail is created. However, the RNase R
exoribonucleases are found in complex with RNA helicase. Plants and mammals express PNPase and at least one mtPAP. Tails
produced by mtPAP are homopolymeric, with the exception of poly(A/U) extensions found in Trypanosoma brucei. Tails are both
stabilizing and destabilizing in trypanosomes and mammals, but only destabilizing in plants, where the 30-ends of the transcripts
are not decorated with a stable poly(A) tail.

Organism
Polymerizing enzyme
of the tails Poly(A) tails

Stability of poly(A)
tails Degradation enzymes

Plants PAP (uncharacterized) Homopolymeric Unstable PNPase and RNR

Yeast – No tails – RNase R/helicase

Trypanosomes mtPAP Poly(A/U) Unstable + Stable RNase R

Human mtPAP Homopolymeric Unstable + Stable (PNPase/LACTB2?/Dec12?)
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transient poly(A) tails in marking the mature versus degradation products of nuclear mRNA. It is believed that
the poly(A)-binding protein binds the stable poly(A)-tail of nuclear and cytosolic mRNAs, differentiating it
from the transient and nonabundant tails of the degradation products (Figure 2) [56]. However, as of yet, no
such protein has been identified in the mitochondria. Moreover, introducing the cytosolic poly(A)-binding
protein, PABPC1, into the mitochondria resulted with translation inhibition [57].

The poly(A)-assisted RNA degradation pathway
Poly(A)-assisted RNA degradation was initially described in Escherichia coli and its molecular mechanism has
been extensively studied in this bacterium. Later, similar pathways were discovered in other systems, such as
other bacteria, chloroplasts, plants, trypanosomes, human mitochondria, certain archaea, and the nucleus and
cytosol of yeast and human cells [58–60]. The poly(A)-assisted degradation pathways are generally similar
across species, with slight variations between organisms. The ‘classic’ sequence of events commences (in pro-
karyotes and organelles) with the endonucleolytic cleavage of the transcript, followed by the addition of poly
(A) or poly(A)-rich 30-extension, and then with exonucleolytic 30–50 degradation of the tagged RNA fragment
[61,62] (Figure 3). Transient poly(A) tails can be homopolymeric (composed of adenosine residues only) or
heteropolymeric/poly(A)-rich (mostly, but not exclusively, adenosines) [50]. In E. coli, the endonuclease RNase
E is believed to carry out the initial transcript cleavage, while polyadenylation is primarily executed by a
nucleotidyl transferase-type PAP, which produces homopolymeric poly(A) tails. PNPase has also been impli-
cated in the latter activity, but to a lesser extent, and produces heteropolymeric extensions [63]. The role of
exonucleolytic degradation is shared by PNPase, RNase II, and RNase R [61,62,64,65].
The existence of the poly(A)-assisted degradation pathway was first discovered upon the detection of nona-

bundant, truncated, adenylated RNA fragments. The adenylated degradation intermediates serve as a tell-tale
sign of the presence of poly(A)-assisted RNA decay, where the tail nucleotide composition provides an initial
hint as to the identity of the polymerizing enzyme [50]. As described above, mRNAs of animal mitochondria
are decorated with a stable poly(A) tail at the 30-end, resembling those of nucleus-encoded mRNAs (Figure 2).
In addition, low-abundance poly(A) tails have been identified on the 30-ends of truncated transcripts of all
types of mitochondrial transcripts, as well as on transcripts derived from the intergenic regions in this organelle
[15]. These intermediate transcripts may serve as a marker for the presence of the poly(A)-assisted degradation
pathway. However, obtaining the proof that this is indeed the case in human mitochondria, which is to show
that under inhibition of the polyadenylation, or the various steps of the exonucleolytic degradation, the polya-
denylated intermediates accumulate, was not yet achieved in this system. Therefore, at present, other sugges-
tions like that the truncated low-abundance poly(A) tails and polyadenylated transcripts represent ‘leakage’
products of the polyadenylation pathway, or the removal of early terminated truncated transcription products,
cannot be ruled out. Nevertheless, in all systems analyzed thus far, inhibition of exonucleolytic degradation, or
of various steps in the polyadenylation process, resulted in the accumulation of the degradation products
[55,59,60,66,67].
Assuming that the poly(A)-assisted degradation pathway is the mechanism of RNA degradation in human

mitochondria, the mechanisms regulating mitochondrial transcript levels remain to be identified. The mito-
chondrial transcripts are processed from only a few initial, long primary transcripts, and then accumulate to
different levels, which are largely determined by the modulation of their stability. Their stability is therefore pri-
marily determined by the specific degradation of each transcript. The rate-limiting step of the degradation
pathway is believed to be the initial endonucleolytic cleavage. In E. coli, this step is triggered by the removal of

Figure 2. The 30-ends of mature mRNAs in various systems.

The details of each are discussed in the text. ‘Dodecamer seq.’ is an encoded tag found at the end of yeast mitochondrial

transcripts.
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the pyrophosphate at the 50-end, resembles the decapping step in nucleus-encoded mRNAs of eukaryotes
[68,69]. However, in human mitochondria, whose RNA transcripts do not contain three phosphates at the
50-end, and which do not express the responsible endoribonuclease, no such step has been identified.
In addition, the enzymes that are responsible for each step of the poly(A)-assisted degradation pathway in

human mitochondria remain to be characterized. While mtPAP and PNPase may be responsible for the second
and third steps, respectively, the initial endonucleolytic cleavage step, if exists, is yet to be shown. As described
above, it could be performed by LACTB2 [35]. The other known human mitochondrial endoribonucleases,
RNase P and RNase Z, may be specifically responsible for tRNA processing [6–8].
Polyadenylation of RNA is a posttranscriptional modification that plays an important role in gene expression.

Unlike other modifications, RNA polyadenylation plays a dual role in regulating both RNA function and stabil-
ity. The addition of a stable poly(A) tail at the 30-end of transcripts contributes to RNA functionality and stabil-
ity, whereas unstable polyadenylation targets RNA to poly(A)-assisted degradation. RNA polyadenylation in
human mitochondria, where its encoded transcripts are long known to harbor stable poly(A) tails at their
mature 30-ends, akin to nucleus-encoded mRNA, can undergo transient, internal polyadenylation as well.
Indeed, the presence of unstable polyadenylation in the mitochondrion is consistent with its evolutionary pro-
karyote origin and elucidates the mechanism of RNA degradation in this organelle. Yet the underlying molecu-
lar mechanism and the enzymes involved remain to be deciphered. The recent findings presented here have
directed mitochondrial RNA metabolism research to now focus on characterizing the mechanisms that differen-
tiate between these opposing forms of RNA polyadenylation.

Abbreviations
MBL, metallo-β-lactamase; mtPAP, mitochondrial poly(A)-polymerase; PAP, poly(A)-polymerase; PNPase,
polynucleotide phosphorylase.
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Figure 3. The polyadenylation-assisted degradation pathway.

The stages of polyadenylation-assisted RNA degradation are: (1) endonucleolytic cleavage, (2) polyadenylation, and

(3) exonucleolytic digestion. Polyadenylation is executed by mtPAP, producing homopolymeric poly(A) tails, or by PNPase,

producing heteropolymeric poly(A)-rich tails. The 30–50 exonucleolytic degradation step is carried out in bacteria and organelles

by PNPase and/or RNase II/R. The first endonucleolytic cleavage step was not yet defined in human mitochondria.
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